ComfortLife SDK
Release 0.3.1

ComfortLife

May 18, 2022

1 About ComfortLife
2 Changelog
3 Quick Start in 5 minutes

4 ComfortLife Kit

9]

Payload documentation

Index

PREFACE

17
27

43

CHAPTER
ONE

ABOUT COMFORTLIFE

ComfortLife is an extremely flexible and scalable IoT platform designed to enable retailers, service providers, user
electronics OEMs, and system integrators to quickly and easily deploy their own connected device ecosystems to
maximize business opportunities with IoT.

ComfortLife makes this possible by addressing, at all levels, the challenges inherent in the fast-developing IoT envi-
ronment, and providing innovative solutions designed with the future in mind. At the forefront of these challenges is
solving the problem of multiple protocols, brands, and data sources providing users with app overload when attempt-
ing to control different devices. ComfortLife unifies these disparate elements in one platform, easing your product’s
adoption. In addition, a strong focus on the technology builds intelligent relationships and communication between
devices, creating the structure to more easily expand your family of devices.

ComfortLife also addresses time-to-market and mass deployment challenges, simplifying and accelerating chipset
enablement and application development, providing solutions that improve video streaming integration in the smart
home.

ComfortLife SDK, Release 0.3.1

2 Chapter 1. About ComfortLife

CHAPTER
TWO

CHANGELOG

Based on Keep A ChangeLog Follows Semantic Versioning

2.1 [0.3.1] - 2020/08/31

2.1.1 Changed

¢ Moved Quick-Start section to top level

2.2 [0.3.0] - 2020/08/05

2.2.1 Added

Added PDF download for html output

* DevPortal section added

¢ Quick Start in 5 minutes added

* Changing numbers for ‘Quick Start in 5 minutes steps’

¢ Changing numbers for ‘Development’ steps

2.2.2 Changed

* Moved changelog and about sections into a new supersection
» Changed versions in order to comply to semver
* Devportal documentation is now up to date with the latest devportal

* Moved sample provisioning and register into their parent steps (1 and 2)

https://keepachangelog.com/en/1.0.0/
https://semver.org/

ComfortLife SDK, Release 0.3.1

2.3 [0.2.0] - 2020/07/31

2.3.1 Added

* Added a changelog page at the root of the documentation
¢ Added status, power, voltage and current capabilities

* Added settings action payload

2.3.2 Changed

* Changed changelog to follow Keep A Log

2.4 [0.1.0] - 2020/06/01

2.4.1 Added

* Added logo and favicon
¢ Added bearer payload documentation

* Added basic usage documentation

Added payload documentation

Initialized the documentation

Chapter 2. Changelog

CHAPTER
THREE

QUICK START IN 5 MINUTES

This topic introduces how to use the DevPortal, and how to create products quickly.

3.1 Step 1 : Setup environment

3.1.1 Register to CL Developer Portal

You may go to our website .

a DEVELOPER PORTAL
Comfort Life

Register your new account on ‘Dev’ server if it is not already done.

https://devportal.dev.comfortlife.me

ComfortLife SDK, Release 0.3.1

P Dev @ Remember me Login
gl
Forgot your password

Your new comfort of life

Dev

Comfort Life

DevPortal

example-dev-portal@comfortiife.me

By registering and logging into your account, you agree to the Terms of
Use, Privacy Policy and Cookies

(You can also login with a Comfortlife account.)

Please check your email to validate your account and go back on Developer Portal .

/\ DEVELOPER PORTAL
Comfort Life

LOGIN

example-dev-portal@comfortife. me

LOGIN

Login on the site and accept the privacy

6 Chapter 3. Quick Start in 5 minutes

https://devportal.dev.comfortlife.me

ComfortLife SDK, Release 0.3.1

3.2 Step 2 : Create you new product

3.2.1 Provisioning Example

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include <cl.h>

void help(const char xapp_name);
void provisioning() ;

int main(int argc, char xxargv)

{

int c;
while ((c = getopt (argc, argv, "h?")) != -1)
{
switch (c)
{
case 'h':
case '?':
default:

help (argv([0]);

provisioning () ;

return 0O;

// khkkhkhkhkkhkkhkhkhkhkkhhkhhkkhkhkhkhkhdhhhhkkhkhAhkhkkhhkhkhkkhkhkhkhkkhkhkhrhkkk
void help(const char xapp_name)
{
printf ("2s.\n\n", app_name);
printf ("Provisioning example.\n\n");
printf ("Usage: %s [-h|-2]\n\n", app_name);

printf (" -h This help\n");

printf ("Examples:\n");
printf ("¢s\n", app_name);

exit (1);

void provisioning_status_handler (const cl_provisioning_event_t status)

{

switch (status)

{

(continues on next page)

3.2. Step 2 : Create you new product 7

ComfortLife SDK, Release 0.3.1

(continued from previous page)

case CL_PROVISIONING_ERROR:
printf ("Provisioning error.\n");
break;

case CL_PROVISIONING_BIND_ERROR:
printf ("Bind error.\n");
break;

case CL_PROVISIONING_WAITING_CLIENT:
printf ("Waiting a client.\n");
break;

case CL_PROVISIONING_CLIENT_CONNECTED:
printf ("Client connected.\n");
break;

case CL_PROVISIONING_CLIENT_DISCONNECTED:
printf ("Client disconnected.\n");
break;

case CL_PROVISIONING_DATA_RECEIVED:
printf ("Data received.\n");
break;

case CL_PROVISIONING_RESPONSE_SENT:
printf ("Response sent.\n");
break;

case CL_PROVISIONING_FINISHED:
printf ("Finished.\n");

break;
}
}
/ *
{"region":" [REGION]", "associationToken":" [ASSOCIATION_TOKEN]","ssid":"[SSID]",
—"password" :" [PASSWORD] "}
*/

void provisioning_data_handler (const unsigned char xrecvbuf, size_t recvlen)

{

printf ("Data received: %¢s\n", recvbuf);

void provisioning()
{

cl_return_t result;

printf("[.]. Initialize context...\n");

strcpy (cl_handle.developer_key, DEVELOPER_KEY) ;

strcpy (cl_handle.iot_brand_name, IOT_BRAND_NAME) ;
strcpy (cl_handle.iot_model_name, IOT_MODEL_NAME) ;
strcpy (cl_handle.iot_submodel_name, IOT_SUBMODEL_NAME) ;
strcpy (cl_handle.iot_system, IOT_SYSTEM);

printf("[.]. Initialize...\n");
result = cl_provisioning_init (&cl_handle);
switch (result) {

(continues on next page)

8 Chapter 3. Quick Start in 5 minutes

ComfortLife SDK, Release 0.3.1

(continued from previous page)

case CL_SUCCESS:
printf ("[+]. Initialization ok.\n");

break;

case CL_FATLURE:

default:
// OTHER
printf("[-]. Failed to init the library provisioning.\n");
break;
}
printf("[.]. Initialize callbacks...\n");

cl_provisioning_get_status (provisioning_status_handler);
cl_provisioning_get_data (provisioning_data_handler);

printf("[.]. Start...\n");
result = cl_provisioning_start();
switch (result) {
case CL_SUCCESS:
printf ("[+]. Success.\n");
break;

case CL_FATLURE:

default:
// OTHER
printf("[-]. Error during the provisioning.\n");
break;
}
printf("[.]. Deinit...\n");
result = cl_provisioning_deinit ();

switch (result) {
case CL_SUCCESS:
printf ("[+]. Deinit ok.\n");
break;

case CL_FAILURE:
default:
// OTHER
printf("[-]. Failed to deinit the library provisioning.\n");

break;

* Click on NEW PRODUCT on the top-right of the screen.

3.2. Step 2 : Create you new product

ComfortLife SDK, Release 0.3.1

N . DEVELOPER PORTAL BRANDS ~ Account ~

Comfort Life

Product All brands. w Al systems - NEW PRODUCT

Create and put your logo for your new brand or use your existing one.

‘Add a new product / Select brand

What is the brand of the device ?

10 Chapter 3. Quick Start in 5 minutes

ComfortLife SDK, Release 0.3.1

Add new product / Add a new brand

Choose the brand name
Comfort Life

Logo of the brand

VALIDATE

Warning: The name you write for the creation is the one that the users will see. The one that will be used for
development will be given to you later.

Click on VALIDATE to go to the next step.

» Next, select the Family Type for your new product.

Add a new product / Select model

“Allsystems
Energy & Electrician
Security
Lighting
Command
Doorbell
Meteo
Video Surveillance
Entertainment
Large Home Appliances
Small Home Appliances
Kitchen Appliances

Camera Socket WiFi Socket Ble Socket Zigbee Switch WiFi

&©

Refrigerator WiFi Refrigerator Ble ~ Cooker Ble Coocker Wii Oven WiFi

&

g
»
H
g

®

Oven Ble Micorwave WiFi Micorwave Ble ~ Business Lock Ble Business Lock CO2 Detector WiFi
WiFi

& ©

®

€02 Detector Ble Speeker WiFi Speeker Ble GYRO Robot GYRO Robot
Vacuum Ble Vacuum Wii

®

&© &

Humidifier Wifi ~ HumidifierBle ~ Fish Tank Ble Fish Tank WiFi Termometer WiFi ~ Remote Control
Ble

Note: Each Family Type with a ‘501’ image are not yet available but will be later.

* Next, define your product name.

3.2. Step 2 : Create you new product 11

ComfortLife SDK, Release 0.3.1

Add a new product / Choose product name

Product name
My Product Name

VALIDATE

Warning: As for the brand, the name you write here is the one that the users will see. The one that will be used
for development will be given to you later.

* Next, choose the functions of your product. You need, at least, one function.

N DEVELOPER PORTAL PRODUCTS BRANDS ~ Account ~

Comfort Life

° i it ° App Panel Design ——————————————————————————— ° Hardware Commission —————————————————————————— ° Arrange Production
Select the capabilities of your product

My Product Name Switch Speed Current Voltage Power Battery
D Common capability to Change the device

. et ff the de d f the de
261ac872a9139571422df6a4496205dd Setonoroffihe devce spee ythe device o o 4 ofthedevice
Model name : drédarse + Issue + Issue + Issue Issue
Submodel name : dré4arse Report Report * Report Issue Issue x Report

. o * Report * Report

System Energyﬂ: E_Imrmnn P P Documentation
Model : Socket WiFi Documentation Documentation

Communication Type : WIFI

/' BASIC EDIT

SKIP NEXT

Note: You can also skip this step. This will not affect the Firmware or the SDK generated later but only the function-
nality in the ComfortLife Application.

» Next step is the selection of the widget design and the popup design for the ComfortLife application.

12 Chapter 3. Quick Start in 5 minutes

ComfortLife SDK, Release 0.3.1

DEVELOPER PORTAL PRODUCTS BRANDS = Account ~

Comfort Life

Function Definition @ #ppPanel Design @ Herdware Commission @ Arrange Production

Select the widget design Preview

My Product Name
D
261ac872a9f3957f422df6a4496205dd
Model name : dr64arse
Submodel name : dré4arse
System : Energy & Electrician
Model : Socket WiFi

]

Communication Type : WIFI My Product Name c My Product Name c
Functions
- Switch : D tati

witch : Documentation &) & J

/ BASICEDIT = .

Default on/off Simple on/off

PREVIOUS m NEXT

DEVELOPER PORTAL PRODUCTS BRANDS = Account ~

Comfort Life

Function Definition @ AppPanel Design @ Hardware Commission @ Arange Production

Select the popup design Preview

My Product Name
D
261ac872a9f3957f422df6a4496205dd
Model name : dré4arse
Submodel name : dré4arse
System : Energy & Electrician
Model : Socket WiFi
Communication Type : WIFI
Functions
- Switch : Documentation

BASICEDIT

popupDIY

PREVIOUS m NEXT

Select your preferred choice and go to the next step.

Note: You can skip this step too. This will not affect the Firmware or the SDK generated later but only the function-
nality in the ComfortLife Application.

* Next, this step is the most important.

3.2. Step 2 : Create you new product 13

ComfortLife SDK, Release 0.3.1

DEVELOPER PORTAL PRODUCTS BRANDS Account ¥
Comfort Life
Function Definition App Panel Design @ Haraware Commission @ Arrange Production
Select module type
D
Shape Module Chip/Dimensions/Applicable Scenarios
My Product Name
CL1sESPB266a Chip: ESP8266 Size: 16x24x3.5mm Use for: MCU, Socket, Light SELECT TYPE
261ac872a913957f4224f624496205dd
Model name : drédarse
Submodel name : drédarse
System : Energy & Electrician
Model : Socket WiFi CL1SESP8266b Chip: ESP8266 Size: 18x23.5x4.1mm Use for: MCU, Socket, Light SELECT TYPE
Communication Type : WIFI
Functions
- Switch : Documentation
7 BASICEDIT CL1sESPB266¢ Chip: ESP8266 Size: 18x23.5x4.1mm Use for: MCU, Socket, Light SELECT TYPE
CL1SESP8285 Chip: ESP8285 Size: 16x24x3.5mm Use for: MCU, Socket, Light SELECT TYPE

W CREATE PRODUCT

If you don’t have a module, select the one that suits you best.

Otherwise, select one with the same chip as yours.

Warning: Consult the overview on the left side of the screen to be sure of your choices. The next step is the
creation of your product on our servers and it will not be possible to come back to make a change !

Click on CREATE PRODUCT.

* Next, there is the definitive page for your product.

DEVELOPER PORTAL

Comort Life

App Panel Design

Hardware Commission

PRODUCTS BRANDS ~ Account -

@ Arange Production

My Product Name
o
261ac872a913957f422d6a4496205dd
Model name : dré4arse
‘Submodel name : drédarse
System : Energy & Electrician
Model : Socket WiFi
Communication Type : WIFI
Module : cl1sesp8285
Functions
- Switch : Documentation

Arrange production

My Product Name (Development)
1D 261ac872a913957f422df6a4496205dd
Model name : drédarse.
Submodel name : drédarse
System : Energy & Electrician
Brand (display name): Comfort Life
Brand (sdk name): penmvexs
Module : clisesps285

CLISESP8285

Chip: ESPB285 Size: 16x24x3.5mm Use for: MCU, Socket, Light

PURCHASE MODULES PURCHASE IDs
GENERATE FIRMWARE

You can here purchase IDs and modules, generate/regenerate and download your firmware, and download our SDK.

The first step generates the firmware for you. It is custom-made and may take a few moments. You can come back on

14

Chapter 3. Quick Start in 5 minutes

ComfortLife SDK, Release 0.3.1

this page later in order to download your firmware when it is ready or wait for it.

Note: (You will see a notification telling you that the firmware is being generated, if not, try to generate it again).

DEVELOPER PORTAL PRODUCTS BRANDS Account ~

/\
Comort Life

Function Definition App Panel Design Hardware Commission Q) Arange Production

Arrange production

My Product Name
o
261ac872a9f3957f422d624496205dd
Model name : dré4arse

Submodel name - dré4arse
System : Energy & Electrician

Model : Socket WiFi @
Gommunication Type : WIFI

Module : cl1sesp8285

Functions
- Switch : Documentation

My Product Name (Development)
1D 261ac872a9f39571422dlf6a4496205dd
Model name - drédarse
Submodel name : drédarse
System - Energy & Electrician
Brand (display name): Comfort Life
Brand (sdk name): penmvexs
Module : cl1sesp8285

Your firmware is in the process of being generated, it will be ready in a few moments. You can come back to this page later to download it.

PURCHASE MODULES PURCHASE IDs
CLIsESP8285 Chip: ESP8285 Size: 16x24x3.5mm Use for: MCU, Socket, Light

o x
Generating firmware

When it is ready, the download button will no longer be disabled and you can download your firmware.

DEVELOPER PORTAL PRODUCTS BRANDS Account ~

Comort Life

Function Definition App Panel Design Hardware Commission @ Arrange Production

Arrange production

My Product Name
D
261ac872a913957f422d6a4496205dd
Model name : dré4arse

Submodel name : drédarse

System : Energy & Electrician

Model : Socket WiFi @
Gommunication Type : WIFI

Module : cl1sesp285

Functions
- Switch : Documentation

My Product Name (Development)
1D 261a6872a91395714224f6a4496205dd
Model name : drédarse.
Submodel name : drédarse
System : Energy & Electrician
Brand (display name): Comfort Life
Brand (sdk name): penmvexs
Module : clisesps285

PURCHASE MODULES PURCHASE IDs
CLISESP8285 Chip: ESPB285 Size: 16x24x3.5mm Use for: MCU, Socket, Light DOWNLOAD FIRMWARE
REGENERATE FIRMWARE

- 5 x
Firmware generation for has been successful !

 After clicking on DOWNLOAD FIRMWARE, check it in the download area of your browser.

3.2. Step 2 : Create you new product 15

ComfortLife SDK, Release 0.3.1

16 Chapter 3. Quick Start in 5 minutes

CHAPTER
FOUR

COMFORTLIFE KIT

The ComfortLife Kit supports establishment of connections of device to cloud, device to device, device to client and
client to device. It assists devices in setting up tunnel connections to provide private pathways for transmission via a
public network.

The device will send to the Comfort Life platform the informations that you defined on the developer portal
The ComfortLife Kit includes:

e Library files (./lib)

¢ API definition and declaration (./include)

» Sample codes (./sample)

 Library Dependencies (./deps)

* Toolchains to cross-compile (./toolchains)

4.1 Basic Concepts

4.1.1 Terminology

Server A machine, maintained by ComfortLife, to handle connection among devices and clients

Device An equipment made by a vendor that is capable of ComfortLife Platform integration to enable clients to build
connection, even if the device is put behind NAT.

Client A terminal connecting to devices for in-between data to be communicated

Developper Key A 32-chars unique identification key issued by ComfortLife Developer Portal for each developer /
manufacturer that requires to use ComfortLife Kit

Account creation available “on the developper portal”_.
Device will use the Developer key to communicate with Server

IOT brand name A name that you have to choose when you declare your new Device on the Developer Portal

Device declaration available “on the developper portal”_.

Device will use the 10T brand name to register to Server

17

https://developer.comfortlife.me

ComfortLife SDK, Release 0.3.1

IOT model name An unique name that you have to choose when you declare your new Device on the Developer
Portal

Device declaration available “on the developper portal”_.
Device will use the 10T submodel name to register to Server

IOT submodel name An unique name that you have to choose when you declare your new Device on the Developer
Portal.

If you have a submodel name different of model name.

Else you can put the same name: submodel name = model n.

Device declaration available “on the developper portal®_.
Device will use the 10T submodel name to register to Server

IOT system The category you need to choose for your Device when you declare it on the Developer Portal

Device will use the 10T system to register to Server

4.1.2 Supported hardware platform

ComfortLife Kit supports several popular development boards

Board name Library folder
LinkIt 7688 lib/Linux/MIPS_MT7688_4.6.3
Linux x86_64 lib/Linux/x86_64

Hisilicon Hi3516¢v300 | lib/Linux/arm-hisiv500-linux
Ingenic Xburst V0.1 lib/Linux/mips-gcc472-glibc216-32bit

18 Chapter 4. ComfortLife Kit

ComfortLife SDK, Release 0.3.1

4.2 General Architecture

IPC
Manufacturer

A

IPC Custom
Code

clh
"config file"

4.3 Development

Follow theses steps in order to setup your device on the ComfortLife Platform.

0. Declare your loT

1. Connect to Internet

—
2. Register to CL

3. Connect to mqtt _

4. Send AV

.,
-

3

CL
DevPortal

CL SDK

Provisioning Module

Registering Module

Communication Module

AV Module

4.3.1 Step 3 : Register your IoT to CL Cloud

Register Example

#include
#include
#include
#include

#include

#define VERSION

#define REGION

<stdio.h>

<stdlib.h>
<string.h>
<unistd.h>

<cl.h>

"0.1.0"

"na

#define ASSOCIATION_TOKEN "4c268ad585630e9f"

void help (const char xapp_name);

void registration_handler (const unsigned char =xstr_json,

void registration();

size_t length);

(continues on next page)

4.2. General Architecture

19

ComfortLife SDK, Release 0.3.1

(continued from previous page)

int main(int argc, char xxargv)

{

int c;
while ((c = getopt (argc, argv, "vh?")) != -1)
{

switch (c)

{
case 'v':
printf ("%s", VERSION) ;
exit (1);
break;

case 'h':
case '?':

default:
help(argv[0]);

registration();

return O;

// PR S R I I I I b I I I e I S b I i b b i i
void help(const char xapp_name)
{

printf ("%s v¢s.\n\n", __FILE__, VERSION);

printf ("Register this device to the server.\n\n");

printf ("Usage: %s [-h|[-?] [-v]\n\n", _ FILE_);
printf (" -h This help\n");
printf (" -V Get the version\n\n");
exit (1);
}
/ %
"id":" [DEVICE_ID]", "plantId":" [PLANT_ID]", "mgtt":{"mgttUsername":" [MQTT_USERNAME]",
—"mgttPassword":" [MQTT_PASSWORD]"}}
*/

void registration_handler (const unsigned char xstr_json, size_t length)

{

printf ("json: <¢s\n", str_json);

void registration()

{
char json[512];
cl_return_t result;

printf("[.]. Initialize context...\n");
strcpy (cl_handle.developer_key, DEVELOPER_KEY) ;

(continues on next page)

20 Chapter 4. ComfortLife Kit

ComfortLife SDK, Release 0.3.1

(continued from previous page)

strcpy (cl_handle.
strcpy (cl_handle.
strcpy (cl_handle.
strcpy (cl_handle.

iot_brand_name,
iot_model_name,
iot_submodel_name,
iot_system,

// INIT

printf("[.]. Initialize...\n");

result = cl_register_init (&cl_handle);
switch (result) {

case CL_SUCCESS:
printf (" [+].
break;

case CL_FATLURE:
default:
// OTHER
printf("[-].
break;

printf ("\n");

printf (" [.]. \n");
cl_register_set_region (REGION) ;

Set the region..

/ *
{
"mac": "&%s",
"brand": "%s",
"submodel": "g%s",
"version": "$%s",
"ip": "3%s",
"associationToken": "&s"
}
x/
// REGISTRATION
printf("[.]. Registration...\n");
memset (json, 0, sizeof(json));

"\
\"mac\":\"%s\", \
\"brand\":\"2s\", \
\"submodel\":\"2s\", \
\"version\":\"2s\", \

\"ip\":\" iy,iff\", \

sprintf (json,

}"I
"Mac_Ingenic_#01",
IOT_BRAND_NAME,
IOT_SUBMODEL_NAME,
VERSION,
"192.168.1.10",
ASSOCIATION_TOKEN
)i
result = cl_register_registration (json,
switch (result) {
case CL_SUCCESS:
printf (" [+].

IOT_BRAND_NAME) ;
IOT_MODEL_NAME) ;
I0T_SUBMODEL_NAME) ;
IOT_SYSTEM) ;

Initialization ok.\n");

Failed to init the library register.\n");

v‘g\u \

\"associationToken\":\"¢

registration_handler);

Registered successfully on backend.\n");

(continues on next page)

4.3. Development

21

ComfortLife SDK, Release 0.3.1

(continued from previous page)

break;

case CL_CONNECTION_FATLED:
printf("[-]. CL_CONNECTION_FAILED.\n");
break;

case CL_DEVICE_NOT_FOUND:
printf (" [-]. CL_DEVICE_NOT_FOUND.\n");
break;

case CL_FATLURE:

default:
// OTHER
printf("[-]. Unable to register on backend.\n");
break;

printf ("\n");

// DEINIT
printf("[.]. Deinit...\n");
result = cl_register_deinit();

switch (result) {
case CL_SUCCESS:
printf ("[+]. Deinit ok.\n");
break;

case CL_FAILURE:

default:
// OTHER
printf("[-]. Failed to deinit the library register.\n");
break;

Now that IoT is connected to Internet, next step is to register to CL Cloud so that device can be authenticated and
registered to ComfortLife ecosystem.

You will have to use informations received during Provisioning step here

Steps:

* Start Registering module with REGION and ASSOCIATION_TOKEN parameters received during Provi-
sioning.

o If registration is successful, CL CLoud will return Device credentials that you will need to use later :
({“id”:”[DEVICE_ID]”,”plantld”:”[PLANT ID]”,”mqtt”:{ “mgqttUsername”:” [MQTT _USERNAME]”,”mqttPassword”:” [M(

22 Chapter 4. ComfortLife Kit

ComfortLife SDK, Release 0.3.1

4.3.2 Step 4 : Connect to MQTT broker

Once successfully registered to CL Cloud, you are granted to connect to CL. MQTT Broker to send informations and
receive commands.

You will have to use informations received during Registration step to connect to MQTT Broker

Example

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include <cl.h>
#define VERSION "0.1.0"

#define REGION "dev"

#define MQTT USERNAME "vdp_874707ce2b8c0f0cl187f143ee9al0dcl4”
#define MQTT PASSWORD "70dde408c087991673d9"

#define DEVICE_ID "fa8652f4c7569b946db446f51c4502ac”

#define PLANT_ID "plant_db"

void help(const char xapp_name);

void mgtt_connection_status_handler (const cl_mgtt_conn_event_t status)
{
switch (status)
{
case CL_MQTT_CONN_CONNECTED:
printf ("Connection etablished.\n");
break;

case CL_MQTT_CONN_DISCONNECTED:
printf ("Connection stopped.\n");
break;

}
void mgtt_data_handler (const unsigned char xstr_json, size_t length)
{

printf ("Data received: ¢s\n", str_json);

/ *
x Example informations json to send to the server
* You can send informations any time

{

"event": "alert",
"version": "0.1.0",
"yid": " [COMMAND_UNIQUE_ID]",
"modules": [{
"id": "[DEVICE_ID]",
"status": [
{
"capability": "call",
"value": "pending"

(continues on next page)

4.3. Development 23

ComfortLife SDK, Release 0.3.1

(continued from previous page)

]
H
b/

char command_id_st
char data_to_send]

"{\"event\":\"
\",\"status\":

"alert",

VERSION,

DEVICE_ID) ;
int result =
switch (result)

{

break;

default:

break;

int main(int argc,
{
int c;
while
{
switch (c)

{

case 'v':

break

TH':

1o .

case
case
default:

// INIT

strcpy (mgtt_conn.
strcpy (mgtt_conn.
strcpy (mgtt_conn.
strcpy (mgtt_conn.
strcpy (mgtt_conn.

static int command_id

sprintf (command_id_str,

((c = getopt

0;

{0};

n
14

r[10]
" ++command_id) ;

10247;

sprintf (data_to_send,

\n, \"uid\"

\ll, \"version\":\"

[{\"capability\":\"call\",\"value\":\"pending\"}1}1}",

command_id_str,

cl_mgtt_send_data(data_to_send);

case CL_SUCCESS:
printf ("Data sent.\n");

case CL_FATLURE:

printf ("Data not sent.\n");

char xxargv)

(argc, argv, "vh?")) !=

printf (" ", VERSION) ;
exit (1);

4

help (argv([0]);

cl_return_t result;

cl_mgtt_conn_t mgtt_conn;

region, REGION) ;
username, MQTT_USERNAME) ;
password, MQTT_PASSWORD) ;
device_id, DEVICE_ID);
plant_id, PLANT_ID);

:\u \",\"modules\":[{\"id\":\"

(continues on next page)

24

Chapter 4. ComfortLife Kit

ComfortLife SDK, Release 0.3.1

(continued from previous page)

"[.]. Initialize context...\n");
cl_handle.developer_key, DEVELOPER_KEY);
cl_handle.iot_brand_name, IOT_BRAND_NAME) ;
cl_handle.iot_model_name, IOT_MODEL_NAME) ;
cl_handle.iot_submodel_name, IOT_SUBMODEL_NAME) ;
cl_handle.iot_system, IOT_SYSTEM);

printf
strcpy
strcpy
strcpy
strcpy
strcpy

result = cl_mgtt_init (&cl_handle);
switch (result) {
case CL_SUCCESS:
printf (" [+]. Mgtt initialized.\n");
break;

case CL_DEVICE_NOT_FOUND:

case CL_CONNECTION_FAILED:

case CL_FATLURE:

default:
printf("[-]. Failed during initializing mgtt.\n");
break;

cl_mgtt_get_connection_status (mgtt_connection_status_handler);
cl_mgtt_get_data (mgtt_data_handler);

#if 1
cl_mgtt_verbose () ;
#endif

// CONNECT
result = cl_mgtt_connect (mgtt_conn);
switch (result) {
case CL_SUCCESS:
printf("[.]. Connection ended.\n");
break;

case CL_DEVICE_NOT_FOUND:

case CL_CONNECTION_FAILED:

case CL_FAILURE:
printf ("[-]. Connection failed.\n");
break;

// deinit
cl_mgtt_deinit ();

return 0;

// KA A KRKRAKAKAA AR AR FA AR KA AR A A A AR A A A AR KA AR AR A AR AKX XK

void help(const char xapp_name)

{

printf ("%s v¢s.\n\n", app_name, VERSION);

printf ("Daemon for the communication with the server.\n");
printf ("This application listens the commands coming from the

server.\n\n");

(continues on next page)

4.3. Development

25

ComfortLife SDK, Release 0.3.1

(continued from previous page)

printf ("Usage: [-h|=2] [-v]\n\n", app_name);
printf (" -h This help\n");

printf (" -v Get the version\n\n");
exit (1);

4.3.3 Step 5 : Send Audio/Video stream

MQTT & UDP payload (previous steps required)

If you want to start a stream through the application, your device will receive the following JSON payload on MQTT
and UDP.

{
"action":"command",
"timestamp":"2020-02-13 14:32:13",
"uid":"UID",
"modules": [
{
"id":"deviceID",
"device": {
"bearerId":"deviceID",
"status": [
{
"capability":"start_stream",
"value": {
// Ignore this part currently

}

}
1,
"clientId":"applicationId"

}

P22

And when you leave the stream on the application you receive the same payload but with “capability”:”stop_stream”.

Start the audio and/or video stream

Please refer to the samples ./sample/linux/x86_64/av
1. Initialise the cl_av module with the c¢/_av_init function
2. Create a rtp channel to the IP and port of your choice with the cI_av_start function.
3. Send Audio/Video with the cl_av_send_audio or cl_av_send_video

In order to visualise the stream. You can use the ComfortLife application if you followed the previous steps. Otherwise
you can use a tool like VLC (rtp with vic) to view the stream.

26 Chapter 4. ComfortLife Kit

https://www.videolan.org/vlc/index.html
https://wiki.videolan.org/Documentation:Streaming_HowTo/Receive_and_Save_a_Stream/

CHAPTER
FIVE

PAYLOAD DOCUMENTATION

This chapter contains the documentation regarding the JSON used to communicate between the devices, the clients
and the cloud of the ComfortLife environment.

You’ll find in the sections of this document the payloads you will need to use in order to ensure a proper working of
your device within the ComfortLife environment.

5.1 Common Payload

5.1.1 Payload

All the other the payloads are based on this common payload.

{

"action": "[ACTION]",
"event": "[EVENT]",
"timestamp":" [TIMESTAMP]",
"uid":" [PAYLOAD_UID]",
"authorization": " [AUTHORIZATION]",
"bearerId":" [BEARER_DEVICE_UID]",
"olantId": "[PLANT_UID]",
"clientId": "[CLIENT_ID]",
"modules": [
{
"id":" [MODULE_UID]",
"name" :" [MODULE_NAME]",
"type":" [MODULE_TYPE]",
"device": {
"bearerId":" [BEARER_DEVICE_UID]",
"associateStatus":" [ASSOCIATE_STATUS]",
"model" :" [DEVICE_MODEL_NAME]",
"oid":" [DEVICE_OID]",
"bearerId":" [BEARER_DEVICE_UID]",
"brandIdentifier":" [BRAND_IDENTIFIER]",
"modelIdentifier": [DEVICE_MODEL_ID],
"submodel" :" [DEVICE_SUBMODEL_NAME]",
"brand":" [DEVICE_BRAND]",

"systems": [
"[SYSTEM_NAME]",

1y
"status": [

(continues on next page)

27

ComfortLife SDK, Release 0.3.1

(continued from previous page)

"capability":" [CAPABILITY_NAME]",
"value":" [VALUE]",
"index": [INDEX]

}l

1y
"uartFrame":" [UART FRAME]",

"code":"[YCB_CODE]",
" [SUBDEVICE_NAME]s": [
{same payload found in "modules" above},

1,

"upgrade": {
"file": "[FIRMWARE_NAME]",
"size": [FIRMWARE_SIZE],
"checksum": " [FIRMWARE_CHECKSUM]"

s

"localStream":{

"ip": "[CAMERA IP]",
"port": [CAMERA VIDEO PORT]
}
}
}
]I
"status":[// You may find this status array if the command is targetting no_,
—modules in particular - ie any device receiving this should try to execute it
{
"capability":" [CAPABILITY NAME]",
"value":" [VALUE]",

"index": [INDEX]
}’

]I
"topic": "[TOPIC]",
"mgttTopics": {
"subscribeTo": [
"topic/to/subscribe/to"
]I
"publishTo": [
"topic/to/publish/to"

5.1.2 Description

Here you’ll find a description of some of the fields. All the fields described here are optional.

[ACTION] set to specify informations below should be executed. The value is specifying the action type :
e command
* syncScenarios

e executeScenario

28 Chapter 5. Payload documentation

ComfortLife SDK, Release 0.3.1

* newTopics
e upgrade

* reboot
 get_info

[EVENT] set to specify informations below are the new state of the specified elements. The value is specifying the
event type :

* silent (should not notify the end user visually - the only purpose is to update values)
* infos
e alert (should trigger a notification)
[TIMESTAMP] unix time when the payload was generated (with the Y-m-d H:i:s format)
[PAYLOAD_UID] uid identifying the payload
[AUTHORIZATION] uid of the user owning this device
[PLANT_UID] uid of the plant to which this device belongs
[MODULE_UIDINAMEITYPE] uid/name/type of the module

[BEARER_DEVICE_UID] if the device is managed by an other one (a HomePilot for example), here is the uid of
the manager

[ASSOCIATE_STATUS] the associate status of the device seen by the sender of the payload. This value can only be
one of the following :

* DISSOCIATED

* PENDING

* LEARNING

* ASSOCIATED
[DEVICE_MODEL_NAME] unique name identifying the device model (“ycb”, “prf”, ... for example)
[DEVICE_MODEL_ID] the unique integer identifying the device model

[DEVICE_SUBMODEL_NAME] the unique name identifying the device submodel (“YC-4000B”, “PRF-100", ...
for example)

[DEVICE_BRAND] the brand name of the device

[SYSTEM_NAME] the unique name identifying on of the device systems (“energy”, “home”, ... for example)
[CAPABILITY_NAME] name of the capability

[VALUE] the value associated to the capability

[INDEX] the index of this capability for this device. It can be useful for devices with hidden subdevices OR indexed
identical capabilities

[TOPIC]
the topic on which this payload has been published to. It may not appear if not relevant
mqttTopics may not appear
[FIRMWARE_NAME] url of the firmware (http://ip:port/cw/CW-100_0_3_0_PROD for example)
[FIRMWARE_SIZE] size of the firmware
[FIRMWARE_CHECKSUM] checksum of the firmware

5.1. Common Payload 29

http://ip:port/cw/CW-100_0_3_0_PROD

ComfortLife SDK, Release 0.3.1

5.2 Capabilities

To send command to devices or receive events, you have to use the capabilities. A capability is a keyword a device
is configured with to handle different types of actions. For each device model, you can discover available capabilities
using this API : https://eu.api.iotcl.pro/v1.0/models/{[} YOUR_MODEL_NAME]

5.2.1 Command

When a device receive this payload, the device has to execute a command related to the capability provided. This
payload will be send by the frontend most of the time.

Payload direction

clients I devices |

>

I
: command payload
I

Payload
{
"action": "command",
"timestamp":" [TIMESTAMP]",
"yid":" [PAYLOAD_UID]",
"modules": [
{
"id":" [MODULE_UID]",
"device" |"scenario"|"service":{
"bearerId":" [BEARER_DEVICE_UID]",
"status": [
{
"capability":" [CAPABILITY_NAME]",
"value":" [VALUE]" //optional

by

]
}

See [TIMESTAMP], [PAYLOAD_UID], [MODULE_UIDINAMEITYPE], [BEARER _DEVICE UID], [CAPABIL-
ITY NAME], [VALUE]

30 Chapter 5. Payload documentation

https://eu.api.iotcl.pro/v1.0/models/{[}YOUR_MODEL_NAME

ComfortLife SDK, Release 0.3.1

Some available capabilities

start_stream

The start_stream capability is sent when a user wants to watch the camera on a device through the ComfortLife
application. The value field of this payload will be:

{

"capability":"start_stream",

"value":

{
"devicePeerName": " [DEVICE PEER NAME RANDOM UID]",
"peerName": " [USER/LOCAL PEER NAME RANDOM UID]",
"videoPort": [VIDEO PORT],
"audioPort": [AUDIO PORT]
"password": "[RANDOM PASSWORD]",
"mediatorHost": " [MEDIATOR HOST]",
"mediatorPort": [MEDIATOR PORT],
"relayHost": "[RELAY HOST]",
"relayPort": [RELAY PORT]

stop_stream

The stop_stream capability is sent when a user stops the video stream on the ComfortLife application. The value
field of the payload is:

{

"capability":"stop_stream",
"value":
{
"peerName": " [USER/LOCAL PEER NAME RANDOM UID]"

}

Future capabilities

resolution

This capability is used to set the video stream resolution. Currently the value field can take 3 values : 1ow, medium
or high

5.2. Capabilities 31

ComfortLife SDK, Release 0.3.1

mirror and flip

The value field sets the mirror or flip mode to enable or disable

bitrate

The value field contains an integer that sets the bitrate of the video stream.

ircut

Sets the ircut mode of the device to enable, disable or auto.

speaker_volume

Sets the speaker volume of the device. The value ranges between 0 and 100.

detection

enable or disable the pir detection

5.2.2 Get Info

Payload direction

clients | devices I

: get_info payload

>

The following payload is sent to request the targeted device to send its current capabilities values

Payload

"action":"get_info",
"timestamp":" [TIMESTAMP]",
"uid":" [PAYLOAD UID]",
"modules": [
{
"id":" [MODULE_UID]",
"device" |"scenario" |"service":{

}

(continues on next page)

32 Chapter 5. Payload documentation

ComfortLife SDK, Release 0.3.1

(continued from previous page)

}

See [TIMESTAMP], [PAYLOAD_UID], [MODULE_UIDINAME\TYPE]

Then the device should respond with the Infos payload

5.2.3 Infos

The following payload is indicating new capability values for the specified device or scenario. You might use the
“device” key most of the time. Use the “infos” value for the “event” key by default. If you the information is
important to be notified to the end user (such as a device call, for example), replace the value by “alert”

Payload direction

devices I clients

I
: infos payload
I

i S

Payload
{
"event": "infos"|"alert"|"silent",
"timestamp":" [TIMESTAMP]",
"yid":" [PAYLOAD_UID]",
"modules": [
{
"id":" [MODULE_UID]",
"device" |"scenario"|"service":{
"bearerId":" [BEARER_DEVICE_UID]",
"associateStatus":"ASSOCIATED" |"PENDING",
"status": [
{
"capability":" [CAPABILITY_NAME]",
"value":" [VALUE]"

}y

}

See [TIMESTAMP], [PAYLOAD_UID], [MODULE UIDINAME\TYPE], [BEARER_DEVICE UID], [ASSO-
CIATE_STATUS], [CAPABILITY NAME], [VALUE]

5.2. Capabilities 33

ComfortLife SDK, Release 0.3.1

5.2.4 Reboot payload

This payload is sent when someone wants to reboot the device.

Payload
{
"action": "reboot",
"timestamp":" [TIMESTAMP]",
"uid":" [PAYLOAD_UID]",
"modules": [
{
"id":" [MODULE_UID]",
"device": {
"bearerId":" [BEARER_DEVICE_UID]"

}

]
}

See [TIMESTAMP], [PAYLOAD_UID], [MODULE_UIDINAME\TYPE], [BEARER_DEVICE_UID]

5.2.5 Upgrade payload

This payload is sent when the device must receive a firmware upgrade. The device must get the firmware through the
file field.

Payload
{
"action": "upgrade",
"timestamp":" [TIMESTAMP]",
"uid":" [PAYLOAD_UID]",
"modules": [
{
"id":" [MODULE_UID]",
"device":{
"bearerId":" [BEARER_DEVICE_UID]"
"upgrade": {
"file": " [FIRMWARE_NAME]",
"size": [FIRMWARE_SIZE],
"checksum": " [FIRMWARE_CHECKSUM]"
} 14
}
}
]
}
See [TIMESTAMP], [PAYLOAD_UID], [MODULE_UIDINAME\TYPE], [BEARER_DEVICE _UID],

[FIRMWARE_NAME], [FIRMWARE_SIZE], [FIRMWARE_CHECKSUM]

34

Chapter 5

. Payload documentation

ComfortLife SDK, Release 0.3.1

5.2.6 Status, power, voltage and current

Capabilities used by electrical devices to log their consumption.

Payload
"modules": [
{
"id": "[MODULE_UID]",
"device": {
"bearerId": " [BEARER_DEVICE_UID]",
"status": [

{
"capability": "status",
"value": "off"

} 14

{
"capability": "power",
"value": O

} 14

{
"capability": "voltage",
"value": O

} 14

{
"capability": "current",
"value": 0O

See [BEARER_DEVICE_UID], [MODULE_UIDINAME|TYPE]

5.2.7 Action - settings

Paylaod for setting WiFi

{
"action": "settings",
"modules": [
{
"id": " [MODULE_UID]",
"device": {
"wifi": {
"ssid": "SSID",
"pwd": "password"

See [MODULE_UIDINAMEITYPE]

5.2. Capabilities

35

ComfortLife SDK, Release 0.3.1

5.3 Bearer device

A bearer device is a device that can manage other devices. In other words, it can forward payloads to them. In the
payloads below, the BEARER_DEVICE_UID value refers to the bearer device uid while the MODULE_UID value
refers to the managed device

[DEVICE_IDENTIFIER] unique identifier for this device on the bearer side
[DEVICE_TYPE] type of the device on the bearer side
[BRAND_IDENTIFIER] unique brand identifier in hexadecimal format
[BRAND_NAME] unique brand name key to identify this brand

[SUBMODEL_IDENTIFIER] unique submodel identifier in hexadecimal format (among other submodels in the
same brand)

[SUBMODEL_NAME] unique submodel name key to identify this submodel. Most of the time, the submodel name
is identical to its model name

5.3.1 Associate

To associate a device to be managed by a bearer, use the following payload. However such association needs to be
validated (see “validate” below) :

Payload direction

clients l devices l

>

I
I
1 associate payload
I

Payload
{
"action": "associate",
"timestamp":" [TIMESTAMP]",
"uid":" [PAYLOAD_UID]",
"modules": [
{
"id":" [MODULE_UID]",
"device": {
"identifier":" [DEVICE_IDENTIFIER]", // optional
"type":" [DEVICE_TYPE]", // optional
"bearerId":" [BEARER_DEVICE_UID]",
"brandIdentifier":" [BRAND_IDENTIFIER]", // optional
"brandName":" [BRAND_NAME]", // optional
"modelIdentifier": [DEVICE_MODEL_ID], // optional
"modelName" :" [DEVICE_MODEL_NAME]", // optional
"submodelIdentifier":" [SUBMODEL_IDENTIFIER]", // optional
"submodelName" :" [SUBMODEL_NAME]", // optional

(continues on next page)

36 Chapter 5. Payload documentation

ComfortLife SDK, Release 0.3.1

(continued from previous page)

"code":"[YCB_CODE]", // optional
" [SUBDEVICE_NAME]s": [
{same payload found in "modules" above},

See [TIMESTAMP], [PAYLOAD_UID], [BEARER DEVICE UID], [DEVICE_MODEL_ID], [DE-
VICE_MODEL _NAME], [DEVICE_IDENTIFIER], [DEVICE_TYPE], [BRAND_IDENTIFIER], [BRAND_NAME],
[SUBMODEL_IDENTIFIER], [SUBMODEL_NAME]

5.3.2 Validate

Once a device is successfully associated to their bearer (see “associate” above), it needs to be validated to be usable

Payload direction

clients devices

>

validate payload

Payload
{
"action": "validate",
"timestamp":" [TIMESTAMP]",
"uid":" [PAYLOAD_ UID]",
"modules": [
{
"id":" [MODULE_UID]",
"device":{
"bearerId":" [BEARER_DEVICE_UID]",
"code":" [YCB_CODE]",

" [SUBDEVICE_NAME]s": [
{same payload found in "modules" above},

See [TIMESTAMP], [PAYLOAD_UID], [BEARER_DEVICE_UID]

5.3. Bearer device 37

ComfortLife SDK, Release 0.3.1

5.3.3 Remove

You can remove a managed device from their bearer using such payload

Payload direction

clients I devices I

>

validate payload

Payload
{
"action": "remove",
"timestamp":" [TIMESTAMP]",
"yid":" [PAYLOAD_UID]",
"modules": [
{
"id":" [MODULE_UID]",
"device":{
"bearerId":" [BEARER_DEVICE_UID]"

}

]
}

See [TIMESTAMP], [PAYLOAD_UID], [BEARER_DEVICE_UID]

5.4 Synchronization

The following payloads are used to ensure the device has synchronized some of their information with the cloud

5.4.1 Synchronizing Timezones

In order to set its timezone a device must send a getTimezone to the backend. Then it will answer with a
syncTimezone payload.

38 Chapter 5. Payload documentation

ComfortLife SDK, Release 0.3.1

Payload direction

device cloud

| |
| |
1 getTimezone |
| >
|

|
syncTimezone
1
|

Get Timezone

Payload

{
"event": "getTimezone",
"timestamp": "[TIMESTAMP]",
"uid": " [PAYLOAD_UID]",
"modules": [
{
"id": "[MODULE_UID]",
"device": {}

See [TIMESTAMP], [PAYLOAD_UID], [MODULE_UIDINAME\TYPE]

Sync Timezone

Payload

{

"action":"syncTimezone",

"timestamp":" [TIMESTAMP]",

"uid": " [PAYLOAD_UID]",
"modules": [

{

"id":" [MODULE_UID]",
"device": {
"timezone": "[TIMEZONE]",

"timezoneOffset": [TIMEZONE_OFFSET], # integer value for the offset in_
—seconds from UTC. For example Asia/Shanghai is -28800
"shortTimezone" :" [SHORT_TIMEZONE]"
}
}

See [TIMESTAMP], [PAYLOAD_UID], [MODULE_UIDINAME\TYPE]

5.4. Synchronization 39

ComfortLife SDK, Release 0.3.1

5.4.2 Get Properties

Request for a sync properties from the cloud. Like the sync timezone the device has to send a getProperties
payload and wait for syncProperties payload.

Payload direction

devices I cloud I

>

: get properties payload

Payload

"event": "getProperties",
"uid": " [PAYLOAD_UID]",
"timestamp": "[TIMESTAMP]",
"modules": [
{
"id": "[MODULE_UID]",
"device": null

5.4.3 Sync properties

The cloud is requesting target devices to update their properties information. A property is a configuration of the
device. For any gateway device (ie a device managing others), you should expect to get the bearerId and the
associatedDevices keys. The latter is listing all devices managed by this gateway as well as their own properties.

Payload direction

cloud l devices I

: sync properties payload
I

Yo

40 Chapter 5. Payload documentation

ComfortLife SDK, Release 0.3.1

Payload
{
"action":"syncProperties",
"timestamp":" [TIMESTAMP]",
"uid": " [PAYLOAD_UID]",
"modules": [
{
"id":" [MODULE_UID]",
"device":{
"properties": {
"parentLocationId":" [LOCATION_UID]",

"keyl":"valuel",
"key2":"value2",

}V
"bearerId":" [BEARER DEVICE_UID]",
"associatedDevices": [
{
"id":" [MODULE_UID]",
"device":{
"properties":{
"parentLocationId":" [LOCATION_UID]",
"keyl":"valuel",
"key2":"value2",

See [TIMESTAMP], [PAYLOAD_UID], [BEARER_DEVICE_UID], [MODULE_UIDINAME\TYPE]

5.4.4 Set properties

The device sets its properties to the cloud. Use this if you want to store unique information about your device to be
retrieved later from a syncProperties payload. When this command is successful, the device should expect an
incoming syncProperties payload to validate the change.

Payload direction

device cloud

>

I
: set properties payload
I

5.4. Synchronization 41

ComfortLife SDK, Release 0.3.1

Payload
{
"action":"setProperties",
"timestamp":" [TIMESTAMP]",
"uid": " [PAYLOAD_UID]",
"modules": [
{
"id":" [MODULE_UID]",
"device":{
"properties": {
"fooll . llbarH,
"my—-custom-property-key":"associated-value",

"property-to-remove":null,

See [TIMESTAMP], [PAYLOAD_UID], [MODULE_UIDINAME\TYPE]

5.4.5 Sync Scenarios

The cloud is requesting the devices to synchronize their scenario information. This feature can not be implemented by
all devices.

Payload direction

cloud l devices l

>

I
I
I sync scenarios payload
I

"action":"syncScenarios",
"timestamp":" [TIMESTAMP]",
"uid": " [PAYLOAD_UID]"

42 Chapter 5. Payload documentation

Symbols

[ACTION], 28
[ASSOCIATE_STATUS], 29
[AUTHORIZATION], 29
[BEARER_DEVICE_UID], 29
[BRAND_IDENTIFIER], 36
[BRAND_NAME], 36
[CAPABILITY_NAME], 29
[DEVICE_BRAND], 29
[DEVICE_IDENTIFIER], 36
[DEVICE_MODEL_ID], 29
[DEVICE_MODEL_NAME], 29
[DEVICE_SUBMODEIL_NAME], 29
[DEVICE_TYPE], 36
[EVENT], 29

[INDEX], 29
[MODULE_UID |NAME | TYPE], 29
[PAYLOAD_UID], 29
[PLANT_UID], 29
[SUBMODEL_IDENTIFIER], 36
[SUBMODEL_NAME], 36
[SYSTEM_NAME], 29
[TIMESTAMP], 29
[

VALUE], 29
C
Client, 17
D

Developper Key, 17
Device, 17

IOT brand name, 17
IOT model name, 18
IOT submodel name, 18
I0T system, 18

S

Server, 17

INDEX

43

	About ComfortLife
	Changelog
	Quick Start in 5 minutes
	ComfortLife Kit
	Payload documentation
	Index

